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Methods  

Selection of Assets 

Bridge locations were selected that had recently experienced record streamflow. Iowa has had 

several years since 2000 in which widespread flooding has affected the primary highway 

network. Across the state, flood recovery since 2008 has exceeded $4 billion. In 2008, the Cedar 

River at Cedar Rapids had catastrophic flooding that exceeded 1.4-times the 0.2% annual 

exceedance probability discharge (AEPD) or 500-year flood. Downstream, I-80 was closed for 

four days and required a 120-mile detour. In 2010, the South Skunk River near Ames reached the 

0.2% AEPD (500-year flood), resulting in the closing of I-35 and US 30 for several days. 

Selection of Climate Stressors and Associated Analytical Activities 

Considerations in selecting climate projection data: The primary climate stressor is 

precipitation, but it is used to produce simulations of streamflow, the primary infrastructure 

stressor. Because linking climate projection data to streamflow simulation models is a novel 

technology in transportation design analysis, our goal was to produce a report with procedures 

that were transparent, collaborative, analytically-grounded, pragmatic, and action-oriented. We 

applied several criteria for selection of the climate projection dataset (Table 3), many of which 

were suggested in Sections 2.4 and 3.3 of The Federal Highway Administration’s Climate 

Change and Extreme Weather Vulnerability Assessment Framework (FHWA 2012), and we 

developed novel analytical techniques to evaluate the credibility of the linked precipitation-

streamflow modeling system. These selection criteria and analytical techniques may be applied 

to any precipitation-runoff model, such as the Hydrologic Engineering Centers River Analysis 

System (HEC-RAS), which was developed by the U.S. Army Corps of Engineers (USACE), the 

soil and water assessment tool (SWAT), or the U.S. Soil Conservation Service/Natural 

Resources Conservation Service (NRCS) TR-20 hydrologic analysis model. In this pilot, we used 

CUENCAS (which means river basins in Spanish). 
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Table 3. Considerations in selecting downscaled climate dataset 

Consideration Comments 

Temporal and 

Spatial Scale 

Hydrological simulation will be poor should climate data with 

inappropriate temporal and spatial scales be used. We used 

historical data to evaluate error from coarseness of climate 

data to determine appropriate climate data temporal and 

spatial scale. 

Accuracy We use downscaled climate data that have been evaluated 

against observed data. For the empirically downscaled data 

used in this pilot study, this means the comparison is during 

the training period for the parameters of the empirical model 

(1960 – 1999). Error evaluation is undertaken for annual, 

seasonal, daily, and extreme precipitation. 

Methodological 

Assumptions 

The empirical downscaling approach assumes model 

parameters estimated during an historical period (1960 – 

1999) are unchanged in the future period. This assumption 

has been evaluated by the perfect model framework 

developed at the Geophysical Fluid Dynamics Laboratory 

(gfdl.noaa.gov/esd_eval_stationarity_pg1). 

Variability The downscaled climate projections database adequately 

samples the three forms of variability in climate projections: 

greenhouse gas emissions scenario, climate model response to 

greenhouse gas emissions, and natural climate variability. 

Availability The downscaled climate projections database was 

immediately available to our project through direct provision 

by the Texas Tech University High-Performance Computing 

Center). 

Use in other Assessments The downscaled climate projections database is derived from 

the database of projections informing the Intergovernmental 

Panel on Climate Change (IPCC). The downscaled database 

has been used in other assessments. This ensures we are using 

a well-reviewed dataset and can draw from and contribute to 

learning of its best uses. 

 

We selected daily precipitation on the one-eighth-degree grid from ARRM for three main 

reasons. First, its spatial and temporal resolution is state-of-the-science within the climate 

projection downscaling research field. We would prefer to have even finer-spaced gridded data 

with sub-daily increments. However, given that daily historical measurements are the most 

widely available data, sub-daily climate projection precipitation data are rarely evaluated, and 

sub-daily downscaling methods are highly experimental. Second, use of these data in this context 

adds new insight to findings in the Gulf Coast Study, Phase 2 Temperature and Precipitation 

Projections for the Mobile Bay Region Final Report (Hayhoe and Stoner 2012). Consistent 

datasets among pilot studies further establish their best uses and limitations. The Gulf Coast 

Study, Phase 2 analysis used ARRM data at 10 locations to inform sensitivity to local future 
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conditions. We extracted data for 22,781 grid points in order to inform the streamflow model. 

Third, this approach has been scrutinized through extensive and transparent evaluation of its bias 

and its central assumption of stationary. This ensures we have a transparent, well-reviewed, and 

repeatable data method. 

The ARRM dataset we used contained 19 climate projections. This is a uniquely large dataset at 

this resolution. Nevertheless, the small number of projections resulted in the main limitation of 

our pilot study being an imbalance in the number of projections for the greenhouse gas scenarios. 

The collection contains seven A1B, nine A2, and three A1FI greenhouse gas scenario projections 

(Table 4). In our analysis, this means only tenuous conclusions can be drawn about differences 

of results between greenhouse gas scenarios. 

Table 4. Global climate model and greenhouse gas scenario of ARRM climate projections 

used in pilot study 

Global  

Climate Model 

Greenhouse  

Gas Scenario 

CCSM A2, A1FI 

CGCM3_T47 A1B, A2 

CGCM2_T63 A1B, A2 

CNRM A1B, A2 

ECHAM5 A1B, A2 

ECHO A1B, A2 

GFDL_2.1 A2, A1FI 

HADCM3 A1B, A2, A1FI 

HADGEM A1B, A2 

 

Streamflow modeling: We used statewide implementation of the CUENCAS hydrological 

model, which is a distributed rainfall-runoff hillslope model (Mantilla and Gupta 2005). 

CUENCAS is a parsimonious model, which means that it minimizes the computational resources 

needed for physically-based models by capturing only the essential features in a watershed and 

using as few parameters as possible to obtain acceptable results. The numerical solution of the 

system of ordinary differential equations that make up the statewide implementation are solved 

using a state-of-the-art parallelized implementation of a numerical solver that runs in the high-

performance-computing cluster, Helium, at UI. 

The model consists of a large number of river links (the portion of a river channel that connects 

two junctions of a river network) and hillslopes (adjacent areas that drain into the links), with 

each link and hillslope having a system of differential equations assigned to it in order to solve 

for water fluxes and storages, as depicted in Figure 2.  
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Error analysis for climate data resolution: Our hydrological engineers developed an approach 

to evaluate the accuracy of streamflow simulation given relatively coarse-resolution climate 

projection data. A two-stage procedure was used to separate errors of the streamflow model from 

those of the coarseness of precipitation data (see Figure 3). The two-stage error evaluation is 

applicable to any combination of climate dataset and streamflow model (e.g., HEC-RAS, SWAT, 

TR-20). 

 

Figure 3. Streamflow error evaluation process for baseline and climate data simulations 

Flowcharts: Streamflow error evaluation process for baseline simulation (top) and climate data 

simulation (bottom), each showing from left to right, input data, left, simulation mode in the 

middle, and baseline simulation error evaluation, right 

The climate data simulation (bottom part of the figure) in the two-stage error analysis used the 

Stage IV data after they had been coarsened to the spatial and temporal increments of the climate 

data. The ARRM data were available on a one-eighth-degree grid with daily increments. The 

Stage IV data were systematically coarsened from their native hourly time step and 4-km by 4-

km (2.49-mile by 2.49-mile) grid until matching the daily time step and one-eighth-degree grid 

of the ARRM data.  

Plausibility analysis for continuous climate data series: The research team concluded the use 

of continuous precipitation change data would require a demonstration of their plausibility. We 

selected annual maximum precipitation (AMP) as a metric for climate model evaluation. 

Although AMP is not the sole driver of annual peak flow in the pilot basins, this extreme rainfall 
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metric is one of the driving processes, and, as the basis for the National Weather Service (NWS) 

precipitation frequency estimates published in NOAA Atlas 14 Precipitation-Frequency Atlas of 

the United States (Perica et al. 2013), it is a metric familiar to engineers. 

The climate scientists developed a two-stage AMP analysis. The first stage evaluated error 

during the historical period of the climate scenarios (1960 – 1999). The second stage evaluated 

error during the future period of the climate scenarios (2000 – 2013). The future climate scenario 

period also is an out-of-sample period for the empirical downscaling method, ARRM, for which 

1960 – 1999 data were used to train model coefficients. This framework allowed the team to 

make the following determination for the suitability of the continuous precipitation change data 

in vulnerability analysis. 

If large errors in AMP were evident during the historical climate scenario period (1960 – 1999), 

it would mean the downscaled data were inaccurate and, therefore, had low credibility as input to 

hydrological simulation of floods. If large errors in AMP were evident during the future climate 

scenario period (2000 – 2010), it would mean the downscaled data had not replicated real-world 

change. The climate projections would have limited credibility in the near term, particularly with 

the design engineers, and would be appropriately used as time-slice climate change data rather 

than continuous climate change data. 

Flood quantile estimation: It was necessary to contrast flood quantiles computed with and 

without future climate change in order to identify the vulnerability due to climate change. It 

wasn’t straightforward to reconcile this analysis component with current USGS protocols that 

only permit subsetting of streamflow records into sub-periods when non-stationarity is evident in 

the annual peak streamflow series.  

We developed an alternative to subsetting by defining two periods of record based on bridge life 

expectancy. For both periods, PeakFQ was applied to the entire period of record. (USGS PeakFQ 

software uses Bulletin #17B of the Hydrology Subcommittee, Guidelines for Determining Flood 

Flow Frequency (1982), procedures to calculate estimates of instantaneous annual-maximum 

peak flows having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years or annual-

exceedance probabilities of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002, respectively.) 

The analysis was shifted away from conflicting with established USGS protocol that focuses on 

subsets of a single data record, because our focus was on comparing records that included or 

excluded future information. By using PeakFQ, we ensured the translation of simulated annual 

peak flow into salient engineering metrics for interpretation within bridge design, maintenance, 

and operations. 

We defined the historical period of record as containing no future climate projection data, and it 

covered the years 1960 – 2009. For all gauges, this historical period was much shorter than the 

observed period of record, because the climate projection data did not extend back in time as far 

as the gauge measurement record. The result is that confidence intervals are larger for flood 

quantiles when using the historical period of record than the full gauge measurement record.  
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We defined a second period that extended into the future to cover the expected bridge lifetime. 

The hypothetical bridge lifetime period was 1960 – 2059. In practice, the bridge lifetime period 

would be determined from the date it was constructed. In our experimentation with this 

approach, we assumed all bridges were constructed at the beginning of the climate projection 

data. A 100-year bridge lifetime expectancy is reasonable. We applied PeakFQ to the full 

simulated streamflow data record (generated by climate projection data feeding into CUENCAS) 

for the historical and bridge lifetime periods. Figure 4 shows the 1% AEPD (100-year flood) 

estimate and its confidence intervals for one of the climate models (HadCM3) under two of the 

greenhouse gas emissions scenarios (A1FI top and A2 bottom). 

HadCM3 Climate Model and A1FI Scenario 

 

HadCM3 Climate Model and A2 Scenario 

 

Figure 4. 1% AEPD (100-year flood) estimate and its confidence intervals for one of the 

climate models (HadCM3) under two of the greenhouse gas emissions scenarios (A1FI top 

and A2 bottom) 
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Figure 4 shows the annual peak flow series (black line plotted line at the bottom) from the 

streamflow simulations based on precipitation from HadCM3 with A1FI (top) and A2 (bottom) 

greenhouse gas emissions scenarios at the Cedar River gauge in Cedar Rapids.  

The solid and dotted black lines horizontally straight across the charts toward the bottoms of 

them show PeakFQ estimates of 1% AEPD (100-year flood) using gauge measurements for the 

entire gauge data record (1903 – 2013). The blue solid and dotted lines horizontally straight 

across the charts toward the tops of them show PeakFQ estimates using climate projection data 

for the bridge lifetime period (1960 – 2059). The two matched sets of dotted lines indicate the 

5% confidence level at the bottom and the 95% confidence level at the top. 

The HadCM3 A1FI compared to A2 series has substantially more peak events during 2020 – 

2100 in excess of peaks during 1960 – 1999. Consequently, the 1% AEPD estimate from 

HadCM3 A1FI compared to A2 is substantially higher (solid blue line) and has a wider 5% to 

95% confidence interval (between the two dotted blue lines). 

Using this approach, we developed 19 estimates of flood quantiles and associated 95% 

confidence intervals for each bridge (Figure 5) for both historical (1960 – 1999) and bridge 

lifetime (1960 – 2059) periods, from which we extracted the 1% AEPD.  
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Figure 5. Data generation for inputs to bridge vulnerability assessment
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We did not follow the practice of grouping the streamflow simulations by greenhouse gas 

emissions scenario (A1B, A1FI, A2), because the number of simulations was too small to reach 

the conclusion that each scenario produced different streamflow statistics. Instead, we used the 

median value of the 19 projection streamflow quantile estimates as the streamflow quantile 

estimate within a period. We bounded the projection quantile estimate by the median values of 

the 19 high and low bounds for the 95% confidence intervals. 

Vulnerability and risk assessment: A qualitative approach to risk assessment was performed to 

document the potential exposure to high streamflow and costs associated with future streamflow 

conditions under current bridge and roadway sites. The analysis used 1% AEPD (100-year flood) 

as the key metric for indicating changes in potentially damaging streamflow. For four of the six 

bridges, the 1% AEPD exceeds current design standards for overtopping. This is also being 

considered as a design streamflow for scour calculations. Significant change in 1% AEPD, 

therefore, would imply change in frequency of overtopping and integrity of landscape supporting 

bridge structures. Increase in overtopping frequency would result in bridge closures and detours 

of substantial distance under the current highway system. 
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FINDINGS 

Finding 1 

Simulated peak flow statistics have acceptably low error for floods greater than twice the mean 

annual peak in basins larger than 250 km
2
 (96.53 square miles) when generated from climate 

projection rainfall data having daily time step and grid spacing of one-eighth degree. 

The infrastructure stressor of interest is streamflow, and the climate variable of interest is 

precipitation. It was not possible in this case to use regression equations to predict flood 

quantiles from precipitation (as in Section 3.3.2 in The Federal Highway Administration’s 

Climate Change and Extreme Weather Vulnerability Assessment Framework). Instead, we 

simulated streamflow by using precipitation data as input to a streamflow model. We applied the 

two-stage error analysis (see description in Approach chapter under Selection of Climate 

Stressors and Associated Analytical Activities, Credibility analysis) to determine whether the 

coarse resolution of the ARRM data would result in unacceptable simulation errors. 

Simulated streamflow traces from May 1, 2013 through June 14, 2013 are shown in Figure 6 for 

the Cedar River in Cedar Rapids, Iowa (USGS gauge 05464500), an outlet point from a basin 

with drainage area of nearly 17000 km
2
 (about 6,500 square miles). Simulated streamflow traces 

along the bottom axis were obtained from the baseline simulation (lighter blue) and climate data 

simulation (darker blue). Precipitation is shown on the top axis for baseline simulation (lighter 

blue) and climate data simulation (darker blue). Differences were typical of errors for this basin. 

Every basin in the state was simulated, and the climate data error for peak annual flow was 

computed as climate data simulation minus baseline simulation. Peak annual flow error was 

sorted by basin size and by flood size, defined as ratio of peak annual flow to mean annual flow. 

Differences relative to baseline simulation for 250 km
2
 (nearly 100 square miles), 1300 km

2
 (a 

little over 500 square miles), and 2500 km
2
 (nearly 1,000 square miles) were bounded by ±80%, 

±50%, and ±30%, respectively. Flood sizes greater than twice the mean annual flood were 

bounded by ±10%. 

The team concluded this simulation approach using the one-eighth-degree grid with daily time 

step would be used best for analysis of peak flow in “big basins and big floods.” It could be 

argued that basins as small as 250 km
2
 (nearly 100 square miles) may be well simulated. The 

pilot basins were greater than 500 km
2
 (nearly 200 square miles).
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Figure 6. Simulated streamflow trace for the Cedar River in Cedar Rapids, Iowa May 1 through June 14, 2013 
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Finding 2 

The credibility of climate projection data for use as input data to generate a continuous 140-year 

hydrological simulation is confirmed with a novel analysis of prediction error. Accuracy is 

evaluated for basin-average annual maximum precipitation (AMP) over a historical climate 

scenario period (1960 – 1999) and a future climate scenario period (2000 – 2013). Bias is small 

in the historical period and much larger in the future scenario period, as expected. The 

projection range of AMP in the future climate scenario period, however, enveloped an abrupt 

change of observed AMP, indicating the projection values are plausible and may serve as input 

values to hydrological models. 

We decided to adhere as much as possible to standard USGS protocols in order to produce 

engineering design metrics that were salient to existing design analysis procedures and replicable 

outside of our pilot basins. The protocol for estimating flood quantiles from streamflow requires 

using the entire period of record, unless the data record is clearly shown to be nonstationary. To 

date, pilot projects have used time-slice climate change data wherein climate projection data are 

aggregated over a minimum of 30-year periods and change is computed as the difference 

between past and future 30-year periods (see, for example, Gulf Coast Study, Phase 2: 

Temperature and Precipitation Projections for the Mobile Bay Region (Hayhoe and Stoner 

2012)). Guidance on how to incorporate continuous climate change data into vulnerability 

assessment is not provided in The Federal Highway Administration’s Climate Change and 

Extreme Weather Vulnerability Assessment Framework (FHWA 2012). 

We applied the two-stage error analysis of AMP predictions to determine the plausibility of 

continuous precipitation sequences (see description in Approach chapter under Selection of 

Climate Stressors and Associated Analytical Activities, Credibility analysis). Over both 

historical and future climate scenario periods, we evaluated the mean error (bias) and the rank of 

observed AMP within the 19 climate projections of AMP. 

We illustrate the analysis using the Cedar River Basin AMP. The Cedar River Basin AMP is the 

average of AMP computed at each grid point within the Cedar River Basin (323 grid points). 

Figure 7 shows observed AMP as solid black circles. 

Prior to 2000, observed AMP ranged from 35 to 65 mm (1.38 in. to 2.56 in.) and exceeded 55 

mm only three times with most values between 40 and 55 mm (1.57 in. to 2.17 in.). During 

2000 – 2010, observed AMP exceeded 55 mm (2.17 in.) in all but two years, and the upper limit 

of the previous 40 years, 65 mm (2.56 in.), was exceeded six of the 11 years. 
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Figure 7. Average AMP for grid points in Cedar River Basin 
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The climate projection AMP is summarized in Figure 7 with the 10th percentile (bottom line), 

mean (middle line), and 90th percentile (top line). The 10th percentile meant that 10% of the 19 

climate projection AMP values in that year were less than the value indicated by that line. 

Likewise, the 90th percentile meant that 90% of the 19 climate projection AMP values in that 

year were less than the value indicated by that line.  

The mean error of climate projection AMP during the historical climate scenario period was only 

-2.6% of the observed 1960 – 1999 mean AMP, but it became more severe during the future 

climate scenario period, dropping to -25.2% (see Table 5). The climate scientists interpreted the 

mean error to be an indication of the effects of natural variability during near-term climate 

change. 

Table 5. Mean error of climate projection AMP 

Summary Statistic 

Percent Difference of 

Projection minus  

Observation (%) 

Projection Mean AMP (1960 – 1999) -2.6% 

Projection Maximum AMP (1960 – 1999) 46.9% 

Projection Mean AMP (2000 – 2010) -25.2% 

Projections Maximum AMP (2000 – 2010) 47.1% 

 

The plausibility of climate projection AMP was evaluated by the rank of observed AMP within 

the 19 climate projections of AMP. The range of the 10th to 90th percentiles of climate 

projection AMP is much larger in the future compared to historical climate scenario period. The 

increase of range was due to higher values for the 90th percentile. Despite the abrupt increase in 

observed Cedar Rapids Basin AMP, the climate projection AMP enveloped the observed AMP. 

From this result, we concluded the climate projection data were a plausible continuous time 

series of precipitation and were acceptable as drivers for continuous streamflow simulation. 

Finding 3 

Streamflow simulation data have larger bias than climate model precipitation data because the 

lack of correspondence in sequences of precipitation from observed and climate model datasets 

create different annual peak flow statistics. Streamflow simulation error is tractable in 

vulnerability analysis because it is smaller than the predicted streamflow change due to 

greenhouse gas increases. 

The continuous streamflow series required further evaluation for credibility as input to flood 

quantile estimation procedures because it was unclear what streamflow error to expect as the 

river network translated the precipitation variability into streamflow variability. The climate 

simulations produce a continuous sequence of daily rainfall, but the sequence of precipitation is 

not identical to the observed sequence. This meant the timing of climate model precipitation 

integrated within the streamflow model would result in different annual peak flow than observed. 
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